博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
博弈之取石子游戏小总结
阅读量:5364 次
发布时间:2019-06-15

本文共 963 字,大约阅读时间需要 3 分钟。

一)巴什博弈(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

很容易想到当n%(m+1)<>0时,先取必胜,第一次先拿走n%(m+1),以后每个回合到保持两人拿走的物品总和为m+1即可。

这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。

 

(二)威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10).可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk=ak+k.

    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,...,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

 

(三)尼姆博弈(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

对于任何奇异局势(a,b,c),都有a^b^c=0.

非奇异局势(a,b,c)(a<b<c)转换为奇异局势,只需将c变为a^b,即从c中减去 c-(a^b)即可。

 

(四)   : 有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜

对于任何奇异局势,都有a[0]^a[1]^a[2]......^a[n-1]=0.

转载于:https://www.cnblogs.com/pblr/p/5698653.html

你可能感兴趣的文章
Data Structure 基本概念
查看>>
NEYC 2017 游记
查看>>
[搬运] 写给 C# 开发人员的函数式编程
查看>>
Python之旅Day14 JQuery部分
查看>>
core--线程池
查看>>
他山之石:加载图片的一个小问题
查看>>
shell - 常识
查看>>
Spring Cloud Stream消费失败后的处理策略(三):使用DLQ队列(RabbitMQ)
查看>>
PKUWC2018 5/6
查看>>
As-If-Serial 理解
查看>>
洛谷P1005 矩阵取数游戏
查看>>
在Silverlight中使用HierarchicalDataTemplate为TreeView实现递归树状结构
查看>>
无线通信基础(一):无线网络演进
查看>>
关于python中带下划线的变量和函数 的意义
查看>>
linux清空日志文件内容 (转)
查看>>
Ajax : load()
查看>>
MySQL-EXPLAIN执行计划Extra解释
查看>>
图片点击轮播(三)-----2017-04-05
查看>>
直播技术细节3
查看>>
《分布式服务架构:原理、设计于实战》总结
查看>>